文章

Enjoy the High Interest Better Off

Having sold almost all stocks in the first quarter of 2022, leaving less than 8% money in the US markets with which all are market index ETFs.  In view of (i) the world economy is going downhill and needs a long time to recover; (ii) energy crisis due to the political reasons and short of supplies; (iii) political instability and regional tensions among and between some countries; (iv) the super hyperinflation pushing the interest rate shoots up off the chart (Once this happens, as I had mentioned before, the economy will be cooled down and stock markets will have to experience sell-offs), and on top of that, the prognosis of the future world economy is groomy, I would rather be more conservative than aggressive/speculative when it comes to investment. I am perhaps one of the other pessimists and I don't expect that it will have a quick turnaround, as someone puts it saying "this is a great buying opportunity", "it's coming to revive". (Well, while they say ...

Be Vigilant to Money-Making Bloggers, YouTubers and Facebookers

I have already written many articles regarding those forecasters, who claim that they had ' accurate ' forecasts in the past, you should pay special attention to. In particular to those who use their blog posts, YouTube channels or Facebook pages for money making purpose.  Look! Those who claimed that the stock market would be rising with the inflation rate, where are they now? Where have they gone? Listen to what they said then and what they are saying now. You can check it out yourself by tracking their words... < 經濟學家論 | 利息上升, 股市會上升? >  Or, some will tell you that they have some great tips for how to purchase UK houses at a below market price at some up-and-coming postcode areas. Don't forget, they tell you so is for a reason, just as they set up their FB pages, YouTube channels is for a reason, which is - money - all about money! Such overseas property investment businesses have been blooming on FB. Some of them will convince you to take their courses (some are on...

第三層思維模型: 從凱因斯選美看估值

圖片
Benjamin Graham  將股票投資比喻為投票機器,而凱因斯  John Maynard Keynes  則將股票投資比喻為選美投票。 凱因斯選美 某遊戲:選美投票人要從 100 張照片中挑選最美的 6 位,而選出的最接近平均的便可得獎。 凱因斯說:「這時候,投票人選的不是自己認為最美的 6 位,而是選擇其他投票人最有可能認為是最美的 6 位。因為每個人想法不一,問題不在於你的最佳判斷(不是你自己認為哪 6 位是最美),也不是普羅大眾一般認為哪 6 位是最美,而是在於 預測平均的其他 投票 人的平均預測 (即: 預測 , 其他 投票 人預測的平均預測結果的平均 )。」這是 第三層思考 。

主觀判斷的不確定風險: 準確 vs 精確 (Subjective Judgement under Uncertainty)

圖片
在不確定性情況下,機率應該怎樣判斷? 我在< Subjective Probability Estimation >一文已寫過就主觀機率,如何 optimise 優化、calibrate 校正、mindful of hypothesis 警惕假設、error  budget 預留錯誤空間、quantify verbal expression of probability 量化人們的語言上的真正機率、clarify 澄清機率。

我的書架 | 有限理性 (5): 雙曲折現 (Hyperbolic Discounting)與現時偏誤 (Present Bias)

圖片
作者友野在書中用到「雙曲折現」(hyperbolic discounting) 來展現人對時間的感受或看法,是受到框架效應的影響,導致「時間不一致性」(time inconsistency),形成「雙曲折現偏誤」。 意思是,人會因為時間的延遲,而把物件的價值評估得大大降低。 雙曲折現偏誤 的特徵是, 重視當前,寧願要現時較少的獲利,也不願等未來更大的利益 。

我的書架 | 有限理性 (4): 心理帳戶 (Mental Accounting)

圖片
 心理帳戶 (Mental Accounting) 是 Richard Thaler 主張的一個決策框架。Thaler 說:「當人類在進行與金錢有關的決策時,並不是評估不同因素和選項後,才理性地決定,而是自己在心裏形造一個狹窄框架後,才進行決定。」Thaler 將這個建造框架的行為,叫做「心理帳戶」。 心理帳戶是一個人類的行為偏誤,把自己的主觀價值加諸在自己的錢之上,從而影響自己的決定,再影響消費行為。

我的書架 | 有限理性 (3): 框架效應 (Framing Effect)

圖片
框架效應 (Framing Effect) 框架效應 就是指,當人們要決策或回答、分析問題時,人會 選擇把問題以某種方式呈現, 這 種呈現的方式或方法叫 做 「框架」(Frame)。 因為用了不同的框架,而導致我們對同一問題有不同的判斷,稱為「框架效應」 (Framing Effect)。 框架效應是以框架來限制人的注意力在框架以內 。

我的書架 | 有限理性 (2): 捷思 (Heuristics) 與偏誤 (Biases)

圖片
  捷思 (Heuristics) 捷思是指在未能掌握資訊的情況下,卻沒有頭緒,但又要做判斷,為了解決問題,人類會利用某種思維方式來對機率和頻率作判斷。 這種思維方式是一種思考捷徑 (mental shortcut) ,被稱為 「捷思」 。簡單來說, 捷思是一種直覺判斷。 常識是一種即時的直覺,直接地浮現腦海,不需思考,所以 常識也是捷思的一種 。 透過捷思而作出的判斷,經常與客觀的機率判斷,相差甚遠。例如,強烈情緒造成的情緒加權,而導致客觀機率大大被扭曲,這就是「 機率忽視偏誤 (Probability Neglect) 」。 所以,在不確定性高的情況下作決策時,必須要計算客觀機率,再用機率作預測。有些人會認為捷思是一種思考陷阱。大部分時候,人都會用某種捷思來做判斷。而 捷思伴隨的是「偏誤」(Biases)。

機率思維 | 蒙堤霍爾困境 (Monty Hall Problem)

圖片
在美國,一電視遊戲節目,遊戲內有三扇門:X、Y、Z。獎品是放在其中一扇門後,任你隨意選擇。假設你選擇了 X 門。那個節目主持人是事先知道獎品是放在哪扇門後,他在未揭曉前開了 Z 門,門後沒有獎品。現在主持人給你一個機會,問你:「是否要換門?」。那你應該是換門還是不換門呢?

我的書架 | 有限理性 (1): 機率究竟怎理解?

圖片
  < 有限理性:行為經濟學入門首選>,作者:友野典男 作者友野典男在書中寫出行為經濟學的原由、重點、理性決策的困難、捷思與偏誤、展望理論、機率的誤解。我在 2021 年已看畢這本書,我認為友野能把較複雜的展望理論、貝氏定理、賽局理論、機率和捷思簡化,及用淺白的數學來解釋這些理論是我非常欣賞的地方。 這本書能協助讀者快速拿揑何為 捷思與偏誤 ,如何避免用捷思與偏誤來作決策,明白應該如何運用機率來正確思考。所以,如果你是對行為經濟學有興趣,又想明白一些基礎知識,我是十分推薦這本書。 我會把這個題目分為五部分: 我的書架 | 有限理性 (1): 機率究竟怎理解? 我的書架 | 有限理性 (2): 捷思 (Heuristics) 與偏誤 (Biases) 我的書架 | 有限理性 (3):  框架效應 (Framing Effect) 我的書架 | 有限理性 (4): 心理帳戶 (Mental Account) 我的書架 | 有限理性 (5): 雙曲折現 (Hyperbolic Discounting)與現時偏誤 (Present Bias) 機率思維 | 蒙堤霍爾困境 (Monty Hall Problem) 至於 展望理論 和 貝氏定理 , 可以看我的其他文章。 =============================== 機率的誤解 背景 :Peter 家中有兩個孩子,但你不知道是男是女。 問題 1 - 3 的背景 相同 --------------------------------------------- 問題 1: 某天,你問 Peter:「 你家 有女兒嗎 ? 」,他答:「有」。那你估計 Peter 的另一個孩子也是女兒的機率是多少? 誤解: 很多人會認為另一個孩子也是女兒的機率是 1/2,因為世上只有男或女的兩個生理性別。 答案: 正確的機率是 1/3。 解釋: 列出兩個孩子的男女組合:女女、女男、男女、男男。各有 1/4 的出現機率。 從 Peter 提供的資訊:「你家有女兒」,那麼「男男」的出現機率 = 0,我們便可以把它刪掉。剩下來的可能組合是:女女、女男、男女,各出現機率 = 1/3。 -------------------------------------------- 問題 2: 某天,你問 ...

貝氏定理 (8): 資訊質素的影響 (Prior Informativeness)

圖片
在 < 貝氏定理 (7): 事後機率分布最大概似估計法 (Maximum a Posteriori Estimation, MAP) > 中,我已經介紹過如果是 continuous distribution 的話是怎樣找到 Posterior Probability。

賽局理論 (Game Theory): 囚徒困境 (Prisoner's Dilemma)

圖片
賽局理論 (Game Theory) 賽局理論(又稱博奕論)是一個決策思考模型,適用於有兩個或多個對手在同一個 競爭 # 下的策略制定。而囚徒困境 (Prisoner's Dilemma) 是賽局理論中,一個最基本的 靜態競爭賽局 *  的思考模型。 *   靜態賽局 (Static Game Theory)  的意思是,競爭參與者皆不知道對手各自的選擇,所以是不受對方選擇影響,可以是一次性的同時行動 (one-off simultaneous actions)。 *   動 態賽局 (Dynamic Game Theory)  的意思是,是相繼或連續性或互動性的重覆行動 (consequential, sequential, or interactive repeated actions)。 #  所謂「競爭」便是賽局,又或所謂「賽局」便是競爭: 競爭 = 賽局 = 博奕  賽局的意思是,一個競爭參與者的選擇,要考慮另一個競爭參與者的選擇,而作出對自己最有利的決策。假設每個競爭參與者也希望把自己利益最大化。賽局理論就是幫助競爭者計算,如何把其他競爭者的選擇納入考慮,而選擇對自己最有利的行動。

貝氏定理 (7): 事後機率分布最大概似估計法 (Maximum a Posteriori Estimation, MAP)

圖片
    在< 貝氏定理 (5): 貝氏更新 (Bayesian Updating ) >中,我巳說過 Bayes rule 的公式是: 如設: D = y ; H =𝜭,那麼 Eq. 1 便轉為 Eq. 2:

期望值理論: 投資額計算

圖片
在  < 機率思維 | 貝氏定理 (1): 理論 (Bayesian Theorem) > ,我們知道不同的人面對一樣的消息,有著不一樣的信念;而基於不同的信念,我們應該怎樣去投資而不會有太大的損失呢?   我們 在決策時 ,務必要 用最少的資金,把期望值最大化。 我在 < 風險決策的兩個理論: 期望值 & 期望效用 > 已列出過以下公式及計算概念:           期望值 = 機率 × 價值                     Eq. (1)        總期望值 = ∑ 機率 × 價值              Eq. (2)          where 價值   (V) = 收益 (E) - 本金 (C)  亦即是:                            總期望值 = 贏的期望值 - 虧的期望值                  Eq. (3)    值博 的 總期望值 ≥  $0  即是要: 總期望值 ≥   $0         ⇒    贏的期望值 > 虧的期望值   風 險較低 的 總期望值  ≥   本金 ...

Recovering From Losses in Life (About Emotional Healing and Recovery)

圖片
The book, "Recovering From Losses in Life" by H. Norman Wright, is a comforting and supporting book that helps ease the pain of loss while you are in the midst of it. The feeling of a permanent loss is like: "It hurts so much so that I feel hollow inside of me",  "I feel like a half-man, I can't function as normal",  "I feel loneliness and isolation without the person I lost",  "I have a void in my life",  "I feel insecure that anyone may suddenly leave me",  "I feel helpless and lifeless",  "It feels like I have shut down myself, and detached from others", "The fear is paralysing". When there is a loss, there is a grieving or mourning process undergoing, grief is absolutely necessary and normal. 

貝氏定理 (6): 貝氏網絡 (Bayesian Network)

圖片
聯合機率 Joint Probability  如果 X 的發生是需要有 A 和 B 的出現,那就是:            P(X ) = P(A, B) 如果:  A  = {a1, a2, a3}; B  = {b1, b2, b3} 那麼: P(A, B) =  {P(a1, b1), P(a1, b2), P(a1, b3), P(a2, b1), P(a2, b2), P(a2, b3), P(a3, b1), P(a3, b2), P(a3, b3)}

Never Fully Trust Experts or Gurus

圖片
Continuing from the previous article < Subjective Probability Estimation >, a nother thing we should deal with caution is other peoples' subjective probability. Clarifying Expert's Estimation As mentioned, we should understand what people mean when they speak "chance" - a descriptive probability.  If an expert or a consultant says his estimation for a possibility of an event happening is "more likely", you have to be very cautious about this word, and should seek further clarification by what does he mean by that. Because you will never know if there is any difference between your understanding about "more likely" and his. If you don't clarify, you'll never know.   You can guide him through the following example conversation. You should start from the average and guide him through by questions: You: Would you say it is 50%? Expert: No, more than that. I said it is more likely. You: 70%? Expert: I would say it is a bit more than 70%. Y...

離散型機率分布: Bernoulli Distribution、Binomial Distribution、Poisson Distribution

圖片
機率分布大致有兩類:離散型 Discrete Distribution,和連續型 Continuous Distribution。離散型分布是指獨立離散的機率,而連續型分布是指機率是無縫緊連地出現。 例如: 離散型分布 :P(10) = 0.16 連續型分布 :P(10-20) = 30 離散型分布 ,包括:伯努利分布 Bernoulli Distribution、二項分布 Binomial Distribution、卜瓦松分布 Poisson Distribution。 我會在本篇文章簡述離散型的機率分布。

貝氏定理 (5): 貝氏更新 (Bayesian Updating)

圖片
在不確定情況下,我們可以利用 Principle of Insufficient Reason  來先進行平均機率假設,即:把每個「假說 Hypothesis」 的 Prior Probability 假設為一樣的平均機率,再計算 Posterior Probability (事後機率分佈)。 如有 N 個假說 Hypothesis ,它們各自的 Prior Probability  便假定為 1/N 。 然後把新資訊納入計算,把第一次計算出來,每個 Hypothesis 的 Posterior Probability 變成下次更新的 Prior Probability,再計算每個 Hypothesis 的新的 Posterior Probability。如此類推,一直更新。這就是「 貝氏更新 (Bayesian Updating) 」。

Assessing Risk Tolerance for Decision Making

圖片
In this article, we will continuously go through Mr K's decision making process in Example 4 in < Decision Tree > by examining his risk tolerance. Risk Tolerance Risk tolerance is the willingness of a person to take risk for better consequences. It means how the person weigh the downside of the consequences as compared to the upside, i.e. how significance of the downside of the consequences he would be impacted?  Most   risk averse people will weigh the downside (loss) heavier than the upside (gains), even the probability for both sides are equal.  Risk tolerance is a crucial factor to determine the diversification of an asset portfolio, which also is an attribute to tradeoff of risk/return. So, understanding the role of risk tolerance  is important not only for making daily decisions but also beneficial for making investment decisions.